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Abstract. The case of a random walk on a one-dimensional inhomogeneous lattice is 
considered when the rate constants of the particle jumping to adjacent lattice points depend 
on the particle’s position and jumping direction. The macroscopic characteristics of the 
process are evaluated for the lattice length tending to infinity. The requirements to be met 
by the sequences of jumping rate constants for the process to be self-averaging are analysed. 
In this case the macroscopic characteristics are shown to be equivalent to those of the 
random walk on a homogeneous lattice with an effective jumping rate constant. A method 
has been found for computing the effective jumping rate constant for a large class of 
inhomogeneous lattices. 

1. Introduction 

Random walks on a lattice are widely used in physics for simulating various processes. 
There is extensive physical and mathematical literature dealing with this classic subject. 
As a rule, however, the random walk on a homogeneous lattice is considered. The case 
of an inhomogenous lattice has been studied far less (Temkin 1969, Chernov 1970, 
Kesten et a1 1975, Solomon 1975). The probability of the particle jumping on an 
inhomogeneous lattice depends on the particle’s position and jumping direction. This is 
the case considered in the present paper. 

Real systems involving random walks on a one-dimensional inhomogeneous lattice 
can be found in various fields (strictly speaking, nearly all real systems are inhomo- 
geneous). We shall cite two instances connected with the DNA molecule. The DNA 
double helix contains two kinds of base pairs (AT and GC) which differ in thermo- 
dynamic stability, hence in this respect it is a typical one-dimensional inhomogeneous 
lattice. 

The first instance of a random walk on DNA is RNA polymerase’s search for the 
promoter site. When binding itself to DNA, RNA polymerase creates a locally unwound 
region in the double helix which it naturally displaces while moving along the DNA chain 
(Riggs et af 1970, Kosaganov et a1 1980). The shift of RNA polymerase to the next base 
pair must be preceded (or attended) by a fluctuational opening of that pair, its frequency 
depending on the kind of pair in question. It should be noted that here the probability 
of the enzyme’s jump does not depend on the jumping direction but only on the kind of 
pair to which it jumps. 

Another instance is the degradation of cruciform structures in DNA molecules 
(Thompson et a1 1976). Consider two double-stranded DNA molecules with the same 
nucleotide sequence in solution. The two molecules may in principle form a metastable 

0305-4470/82/010185 + 13$02.00 @ 1982 The Institute of Physics 185 



186 V V Anshelevich and A V Vologodskii 

long-lived cruciform structure (see figure 1). The probability of a spontaneous forma- 
tion of such structures in solution is negligible but they can be obtained by some special 
methods (Thompson et a1 1976). The crossing point in these structures will perform a 
random walk until it reaches one of the ends and the cross falls into two double-stranded 
molecules. 
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Figure 1. Diagram of the formation of cruciform structures out of two double-stranded 
DNA molecules. 

A shift of the crossing point involves the transfer of two identical base pairs from the 
1-1' helices to 2-2' and backwards, which must be preceded by a simultaneous opening 
of two symmetrical base pairs. The reverse jump requires the opening of the same kind 
of pairs, hence it will be characterised by the same rate constant. 

In both cases we deal with the random walk on a one-dimensional inhomogeneous 
lattice. In the first instance, however, there is the additional condition of equal 
probabilities of jumping to a given lattice point, while in the second instance each edge 
of the lattice corresponds to a certain probability of jumping which is the same for 
motion from left to right and from right to left. The objective of the present study is to 
analyse the relationship between the distribution of the microscopic probabilities of 
jumping on a one-dimensional inhomogeneous lattice and the effective macroscopic 
time characteristics of the random walk process. To be more specific, we shall 
hereinafter consider the random walk on a stretch with absorbing boundaries and will 
regard the probability of the particle surviving until time t as the macroscopic charac- 
teristic of the process. We hope that for long enough stretches the kinetic curve of 
particle disappearance at the stretch's ends will be determined only by the average 
characteristics of the sequence of jumping probabilities. In contrast with references 
(Temkin 1969, Chernov 1970, Kesten et a1 1975, Solomon 1975), we treat the case 
when the random walk may be considered macroscopically as a diffusion problem. We 
shall attempt to find asymptotic relations between the micro- and macroscopic charac- 
teristics of the random walk and assess the extent of their app!icability to finite stretches. 

Like many other problems involving random inhomogeneities of the medium, the 
problem in hand may be reduced to finding the asymptotic spectral characteristics of the 
random matrix. As we shall proceed to show, the resulting matrix is entirely analogous 
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to the one emerging in the problem of one-dimensional inhomogeneous lattice vibra- 
tions (Dyson 1966). Yet, when analysing the random walk, we are interested in the 
asymptotic behaviour of minimum eigenvalues, whereas in the problem of lattice 
fluctuations we are after the density of the spectrum of eigenvalues. 

2. Formulation of the problem 

Consider a one-dimensional lattice containing N + 1 points. Let a particle perform a 
random walk over the lattice points and disappear at the terminal points (0 and N). The 
particle may jump only to adjacent lattice points. The probability of the particle 
jumping in the small time interval At  from point k to point (k + 1) is a k  At, from point k 
to point (k - l), &At. In the case of a homogeneous lattice f f k  = bk  = a. Assume that the 
rate constant sequences for the { a k }  and { b k }  jumps are macroscopically homogeneous, 
i.e. the average characteristics of these sequences computed for long enough segments 
of the sequences do not depend on the segments’ position. This requirement is met, for 
instance, by the typical realisations of ergodic stationary processes. 

We seek to answer the following questions: 
(1) Are the macroscopic characteristics of the random walk self-averaged, i.e. are 

the macroscopic time characteristics of the process determined only by the average 
characteristics of the sequences of microscopic rate constants for the { a k }  and { b k }  
jumps? 

(2) If self-averaging does occur, is there a similarity of the macroscopic charac- 
teristics, i.e. do the macroscopic characteristics of the random walk on an inhomo- 
geneous lattice coincide for a large enough N with the corresponding characteristics of 
the random walk on a homogeneous lattice with an effective jumping rate constant aeff? 

(3) If the effective jumping rate constant aeff exists, in what way is it expressed 
through the average characteristics of the sequences { a k }  and { b k } ?  

Thus we have to compare the macroscopic characteristics of the random walk on an 
inhomogeneous lattice with the corresponding characteristics of the random walk on a 
homogeneous lattice. 

We shall regard the probability of the particle surviving until time t as the 
macroscopic characteristic of the process, provided that at the moment t = 0 the particle 
was at the point aN where 0 < a < 1, i.e. we shall consider the function 

The functions x k ( f )  are the probabilities of the particle being at the lattice point k at 
time t. The change of these probabilities in time is described by the following system of 
differential equations: 

where 
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is an ( N  - 1)-dimensional vector and A is a tridiagonal matrix of order N - 1 : 

, ' a l+bl  -b2 0 0 0 . . .  0 
-al a 2 + b 2  -b3 0 0 . . .  0 

-a2 a 3 + b 3  -b4 0 . . .  0 
A = [  0 -a3  a 4 + h 4  -hs . ~ .  

0 0 0 . . .  -0.v -1 O N -  2 + h.v - 2  

0 0 0 . . .  0 -aN- + bN ~ : 

The solution of system (1) may be represented as follows: 

N - 1 

x ( t )  = 1 c, exp(-A,t)~'"' 
n = l  

13) 

where A, are the eigenvalues of the matrix A indexed in the order of increasing, 6"' ' are 
the corresponding eigenvectors and c, are coefficients dependent on the initial condi- 
tions. 

If all the ak and bk are equal to a,  i.e. if the random walk occurs on a homogeneous 
lattice, then 

If there exists an effective jumping rate constant aeff, the characteristic time for 
reaching the boundary will be of the order N 2 / a e R .  Therefore we are interested in the 
asymptotic behaviour of the function P ( N 2 t )  for N large enough. It follows from 
equations (1)-(3) that 

N -1 N-l  

l"(thT2) = cnt',"' exp(-A,N*t). 
k - 1  n = l  

( 5  1 

Since A,N2 - aeff7r2n2, the first few terms account for an overwhelming part of the sum 
over n. 

First of all we tried to answer the above questions by a series of computer 
experiments. The above observations made it possible to analyse only the first 
eigenvalues and corresponding eigenfunctions in the computer experiments. The 
results of the experiments were then analytically generalised. 

3. Results of computer experiments 

Computations were performed for sequences {ak} and {6k} built with the use of the 
following algorithm: 

( 6 )  

where rk are pseudorandom numbers rectangularly distributed over the interval [O, 11 
and y is a variable parameter. The case of y = 1 corresponds to the random walk on a 
homogeneous lattice with jumping rate constants a k  = h k  = 1. 
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The eigenvalues A, of the matrix A were computed by the method of Givens 
(Wilkinson 1965) and the eigenvectors 6'") by one of the methods presented by 
Godunov and Riabenkii (1973). The vectors 6'"' were scaled to unity. Let A,(a) and 
6'"'(a) denote the eigenvalues and eigenvectors of the matrix for a homogeneous lattice 

Analysis of the dependence of the root-mean-square relative deviation of the first 
few eigenvalues on N has shown (figure 2) that for N large enough the eigenvalues do 
not depend on the specific realisation of sequences { a k }  and { b k }  constructed according 
to algorithm (6). 

with a k  = b k  = a. 

I I 1 I I I I I 1 

1 2 3 1 2 3 X I 0 2  

N - 1 / 2  

Figure 2. Dependence on the lattice length N of relative root-mean-square deviation of 
eigenvalues A l ( 0 )  and As(.) for random matrices A with parameters y = 4(a) and y = 16 
( b ) .  The root-mean-square deviation was calculated from 16 different realisations of the 
random matrices for each value of N and y. 

It follows from equation (4) that A,(a)/Al(a) - n2 for large values of N. Table 1 
shows that the same relation holds for y # 1 if N is large enough (N  = 20 000). Besides 
(see table 2) A J A I ( 1 )  does not depend on N if N is large enough. Therefore 

and these relations are independent of N if N is large enough. 

eigenvectors 
The results of analysis of the eigenvectors 6'"' are shown in figure 3. For the first few 

- p(1)I-  1/JN (8) 

Table 1. Ratios of first eigenvalues for the random matrices A with y = 4; case f f k  = bk+i; A n  
is obtained by averaging A, over 16 realisations of random 20 000-dimensional matrices. 

n . i " l h ,  n 2 

1 1 1 
2 4.004 4 
3 9.008 9 
4 16.003 16 
5 24.994 25 
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Table 2. Ratio of first eigenvalue A 1  of the matrix A with y = 4 to first eigenvalue A,( 1 j of 
the matrix for a homogeneous lattice depending upon lattice length N ;  case al, = bk- ,  , h l  is 
obtained by averaging over 16 realisations of random N-dimensional matrices. 

1000 1.615 
4 000 1.603 

20 000 1.600 

1 2 3 x IO' 
N -  ? ' -  

Figure 3. The lattice length dependence of the norm of the difference between eigenvectors 
of the matrices corresponding to random walks on a homogeneous lattice and an inhomo- 
geneous lattice with the parameter y = 4. The dependence is shown for the first (31, third 
(A) and fifth (a) eigenvectors. For the second and fourth eigenvectors intermediate results 
were obtained. For each N the averaging was performed over 16 different realisations of 
the 10 000-dimensional random matrices. 

for N .+ CO, i.e. for N large enough, ,$(''' do not depend upon the specific realisation of 
sequences {ak} and { b k }  constructed according to algorithm (6), or upon y. 

It follows from expressions (3), (7) and (8) that for sequences {ak} and { b k }  based on 
algorithm (6 )  the macroscopic characteristics of the random walk on an inhomogeneous 
lattice asymptotically coincide for N .+ CO with the corresponding characteristics of the 
random walk on a homogeneous lattice with the jumping rate constant 

aeff = A l / A 1 ( 1 ) .  191 

We have succeeded in guessing the equation relating the macroscopic quantity a 
to the microscopic jumping rate constants { a k }  for the case when ak = bk, I : 

For sequences constructed according to algorithm (6) equation (10) is transformed in 
the following way: 

a e f f  = 2 y / ( 1 +  y ) .  (111 
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The results of a comparison of aeff values computed according to equations (9) and 
(11) are presented in table 3. 

Table 3. Values of the effective jumping rate constant aeff computed and obtained from 
equation (10) for various y;  case at  = br+ , ;  is obtained by averaging over 16 realisations 
of random 20 000-dimensional matrices. 

Y aea = i1/4 sin(rJ2N) aea = 2y/( l+ 7 )  

2 1.333 
4 1.600 
8 1.778 

16 1.883 
32 1.942 
64 1.978 

1.333 
1.600 
1.778 
1.882 
1.939 
1.969 

Exactly the same results, including equation (lo), were obtained for another class of 

One can therefore presume that equation (10) holds for any macroscopically 

We have also investigated an essentially different class of sequences { a k }  and {bk}  

sequences based on the algorithm ak = 1 + yrk, bkcl = ak. 

homogeneous sequences { a k }  and { b k }  which meet the condition ak = b k + l .  

independently constructed according to the algorithm 

In this case the eigenvalues computed for different realisations of sequences (12) do 
not show any tendency to approach each other with increasing N. It can therefore be 
supposed that there is no self-averaging of the macroscopic characteristics of the 
random walk in this case. 

A random walk model similar to the one described by (12) was recently discussed in 
Sinai (1981). The only difference is that in Sinai (1981) jumps occur at discrete 
moments of time. The paper demonstrates the lack of self-averaging in a model of this 
kind; the same ensues from our numerical experiment. The reason for this is that the 
fixation of a specific pair of random sequences { a k }  and { b k } ,  obtained by means of 
algorithm (12), creates ‘holes’, i.e. points on the left of which mostly ak > bk to a length 
m and on the right mostly a k  C bk, m being unlimited in contrast to the models discussed 
above. Self-averaging does not take place because the position of a ‘hole’ depends on 
the specific sequence and not only on its average characteristics. 

4. Analytical treatment 

In this section we shall specify the sufficient requirements to be met by the sequences of 
jumping rate constants {ak} and {bk} to ensure the self-averaging of the macroscopic 
characteristics of the random walk on an inhomogeneous lattice. These macroscopic 
characteristics asymptotically coincide, for N large enough, with the corresponding 
characteristics of the random walk on a homogeneous lattice with an effective jumping 
rate constant a eff. We have obtained equations expressing the macroscopic quantity aeff 
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through the microscopic quantities {ak} and { b k ] .  We shall now apply the approach 
described in Anshelevich and Vologodskii ( 1 9 8 1 ) .  

The first step is to compute the characteristic polynomial of the matrix A. 
Let Ak+l (h)  be a kth-order determinant of the matrix A - AE. A double expansion 

of this polynomial results in a situation wherein the sequence of polynomials A 2 0  L 
A&), . . . satisfies the recursion relation 

hk+i(h  ) = (Uk i- bk - h ) a k ( h  - Uk i b k  A A -  ) 113) 

with the initial condition 

Ao(A 1 = 0, h,(A)=l .  

Let 
7. 

& ( A )  = 1 (-l)"h:"'A'', 
r r = O  

where for each k only a finite number of coefficients A:' differ from zero 

their coefficients: 
From the recursion relation ( 1 3 )  for polynomials we obtain a recursion relation for 

A(knll=(Clk + b k ) h : ' - U k - I b k h ( k ) l ) l + j l  -&,)Ay ' I  

with the initial condition 

A t '  = 0. A:") =; s,, 
where 

n = 0 ,  
n ,O. 

6, =[;; 
By successively finding from this equation AY),  A:"', Ay', . . . and considering A:' I '  to 
have been found already, we obtain 

Consider the scaling characteristic polynomials 
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We divide the numerator and the denominator of the above fraction by a l a 2 . .  . ak-l, 
introduce the notations 

and use the identity 
k-1  1-1 

m =O m =O 

Then equation (16) becomes 

Let the following condition be met: there are limits 

Then 
1 c a m  = + S ( l ) ) ,  where S(1) + 0 if 1 +CO. 

m = l  

We shall now prove, using the method of mathematical induction, that there exists a 
limit 

y'"'= lim y(kn) 
k-m 

and compute it. 

y(k0' = 1 by definition, hence y(O) = 1. 

Assume that 
y p  = y("-l) + & (k), 

where E (k) + 0 for k + CO. Then, according to formula (17), 

where e ( k )  -* 0 for k + CO. 

Since 

1 k-1 d-' 
lim k2n+l 1 ( k  -l)lZ"-'d7' = 
k+w 1 = 1  ( 2 n ) ( 2 n  + 1) 

it follows that 
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Since y"' = 1 it follows from this recursion relation that 

y ( " ) =  (wd-')"/(2n f l ) ! ,  

Recalling (15), we see that 

sin(wA/ d ) ' * 
lim y k ( A ) =  ( - I ) *  
k-ccc n = O  (2n + l ) !  (wA/d)'/2 ' 

A "  = cc (wd ' )" 

Since the roots of the polynomial y ~ ( h )  are hmN2 where A,,, denotes the eigenvalues 
of the matrix A of order N - 1 indexed in increasing order, it follows from (19)  that 

h,N2+ ( d / w ) r 2 m 2  

for N + m .  
Hence, if condition (18) is met, the eigenvalues A,,, of the inhomogeneous lattice 

matrix asymptotically coincide with the eigenvalues A m ( d / w )  of the matrix for a 
homogeneous lattice in which ak = bk = d / w .  

I/\, -A, (d /w) lN2+0 (20) 

for N + CO. 

We now go on to the computation of the eigenfunctions of the matrix A.  
The system of equations for the eigenvectors and eigenvalues of the matrix A of 

order N - 1 is 

ak-1Xk-1 -(ak + bk)Xk + bk+lXk+l =hXk, 

x o  = 0 ,  X * v  = 0. (21 I 

We substitute the variables uk = (n:,, b,)xk.  Then this system of equations becomes 

Uk+l=(ak +bk-A)Uk-ak-lbkllk 1 ,  

u g  = 0,  U N  = 0.  (22)  

A comparison of this system with the system of equations (13) shows that the 
solutions of system (13) meeting the additional condition uN = 0 are solutions of system 
(22) .  Therefore the vector (Al(Am), A2(Am), . . . , is a solution of system (22)  
for A = A, where A, is an eigenvalue of the matrix A of order N - 1 ,  and the vector 

is a solution of system (21)  for A = A,,, and consequently the eigenvector of the matrix A 
of order N - 1 with the eigenvalue A,,,. 

By substituting Ai" from (14)  and using equation (19)  and (20) we obtain, for N 
large enough, 

tim' - ( 2 / N ) 1 ' 2 ( d 1 / 2 / d k )  sin ( T m k l N ) .  

These eigenvectors are orthonormal relative to the scalar product 
N-I 

Thus, if condition (18) is met, the eigenvectors 6"' of the inhomogeneous lattice 
matrix and the eigenvectors ['"'(dlw) of the homogeneous lattice matrix with ak = hk = 
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d / o  satisfy the relation 

mfxl,$” - (d1’*/dk)[im’(d/w)(fi-, 0 (24) 

for N -, 00. 

Now note that the matrix A is self-adjoint relative to the scalar product in equation 
(23). Therefore the eigenvectors rem) are orthogonal relative to this scalar product. 
Hence, if at time t = 0 the particle was at point cuN where 0 <a < 1, the coefficients C, in 
equation (5) asymptotically satisfy, for N large enough, the relation 

C, =&lmN)duN -&&lmN)(d/w) =&Cm(d/w)* 

Besides, it follows from (24) that 

It follows from equations ( 5 ) ,  (20), (25) and (26) that if condition (18) is met, the 
macroscopic characteristic PN ( fN2)  of the random walk on an inhomogeneous lattice 
asymptotically coincides, for N large enough, with the corresponding characteristic of 
the random walk on a homogeneous lattice with a k  = b k  = d/w. 

Note that the sequences {ak}  and {bk}  enter conditions (18) in a non-symmetrical 
way. This non-symmetry is due to the non-symmetry of the passage to the limit, which 
adds new points on the right. However, as can be seen from (18), the physically 
meaningful value d/w depends on the sequences {ak} and {bk}  in a symmetrical fashion. 

We shall now consider a few examples where condition (18) is met. 
(1) Let uk = b k + l .  Then condition (18) becomes the condition of the existence of a 

limit 
1 k - 1  

k w = b l  lim - 1 a;’. 

In this case 

(2) Let ak = bk+2. Then condition (18) becomes the condition of the existence of the 
limits 

In this case 

(3) Let each lattice point k correspond to a positive number uk and each edge 
connecting lattice points k and k + 1 to a positive number uk. Assume that ak = ukuk, 
bk = Ukvk-1. Then condition (18) becomes the condition of the existence of the limits 



196 V V Ansheleuich and A V Vologodskii 

In this case 

Note that any sequences { a k }  and { b k }  may be represented in this way. 
The conditions in examples (1)-(3) are met for a large class of sequences { f f k } ,  { u k }  

and { u k } .  These include periodical sequences as well as typical realisations of periodical 
stationary random sequences. The sequences {uk} and { U k }  may or may not be 
intercorrelated. 

In the first example the jumping rate constants along each edge from left to right and 
from right to left are the same. In the second example the jumping rate constant 
depends only on the lattice point to which the particle jumps. In the third example the 
jumping rate constant depends on the lattice point from which the particle jumps and 
the edge it jumps along 

5. Discussion 

Our results show that the random walk on an inhomogeneous lattice may in a number of 
cases be approximated by the random walk on a homogeneous lattice with an effective 
jumping rate constant. It should be emphasised that rigorous analysis was carried out 
only for N -* 00. The applicability of these results to finite lattices may be assessed on 
the basis of the numerical experiments. 

Analysis of the first two examples treated at the elid of 9: 4 shows that the local strict 
correlation between sequences { a k }  and {bk}  ensures the self-averaging of the macro- 
scopic characteristics and the existence of an effective jumping rate constant. The third 
example shows this to be equally true in the case of a weaker correlation between 
sequences { a k }  and {bk} .  

The approach elaborated above makes it possible to compute the value of a'' for 
each specific case. 

Note that there is no self-averaging if there is no correlation between sequences {ak} 
and {bk} ,  as has been shown by the computer experiment. 

We shall now analyse the dependence of aeff on sequences {ak} and {bk} in the first 
two examples treated at the end of P 4. To be more definite, let ak be independent for 
various k and 

with probability 4, 
a.={:: with probability i. I 27)  

It will be easily seen that these two specific examples correspond to the two real 
systems considered in the Introduction. Recall that the first instance has been 
thoroughly computer-analysed. 

For sequences based on equation (27) aeff is expressed in the following way: in the 
first case, when a k  = bk+* 

aeff = 2 y / ( l +  y ) ,  

in the second case, when a k  = bktZ 

aeff = 8 7 ' / (  1 + Y ) ~ .  
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These equations show that in the first case aeff as a function of y monotonically 
increases and tends to 2 as y -+ 00, while in the second case aeff reaches a maximum at 
y = 2 and tends to 0 as y -* 00. Thus even in these two closely related examples the 
dependence of aeff on the sequences {ak} and { b k }  is essentially different. 
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